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LETTER TO THE EDITOR 

On equations with universal invariance 

D R Grigoret 
Depmment of Theoretical Physics, Institute of Atomic Physics, Bucharest-MHgurele, PO Box 
MG 6. Romania 

Received I November 1994 

Abstrxi A general discussion of equations with universal invariance for a scalar field is 
provided in the finmework of La%rangian theory of first-order systems. The condition of 
universal invariance is that the LagrangeSouriau form of the system is invariant up to a Function 
factor with respect to these mformations.  We consider in detail the case when this function 
is homogeneous in the first-order derivatives. When this function is non-uivial we have an 
example of non-Noethenan symmetries and obtain some equations intensively studied in the 
litemure. 

Recently there has been much interest in the study of partial differential equations which 
possess so-called universal invariance [ 1 4 .  For a field with N components, this means 
that if @ A  ( A  = 1.2, . . . , N )  is a solution of the field equations, then F o @ is also a 
solution of the same equation for any diffeomorphism F E Diff(RN). One usually supposes 
that such an equation follows from a variational principle, i.e. is of the Lagrangian type. 

The principle of universal invariance seems to produce many interesting equations of 
physical relevance. So it will be desirable to have a programme of classifying such equations 
following from the characterization above. We will start in this letter with the simplest case, 
namely when the Lagrangian is of first order and the field is scalar, i.e. N = 1. 

In the case of first-order Lagrangians, one can use the formalism described in [5] which 
is very well suited to the study of Lagrangian systems with groups of symmetries. Applying 
this formalism, we will be able to write down a general equation with universal invariance 
for a scalar field. 

In this letter, we present the general formalism for the case of a scalar field-in this 
case a complete discussion is possible-and derive the result announced above. 

The geometric setting of the Lagrangian theory in particle mechanics is usually based on 
the Po incWar tan  1-form, but it is also possible to use a 2-form with the Euler-Lagrange 
equations as the associated system [6]. This point of view was intensively exploited by 
Souriau [7] in connection with the Hamiltonian formalism. The proper generalization of 
these ideas to classical field theory is due to Krupka [SI, Betounes [9,10] and Rund [I 11. 
We will follow the presentation from 151, but we will study directly, for simplicity. the case 
of a scalar field. 

Let S be a differentiable manifold of dimension n + 1. The first-order Lagrangian 
formalism is based on an auxiliary object, namely the bundle of 1-jets of n-dimensional 
submanifolds of S: 

4 (SI = U,,SJ,' ( S ) ,  

t E-mail: grigore@roifa.bitnet, grigore@ifa.ro 

L49 030S4470/95M20049+09$19.50 @ 1995 IOP Publishing Ltd 



E O  Letter to the Editor 

where J,! (S), is the manifold of n-dimensional linear subspaces of the tangent space T,(S) 
at S in the point p E S. This manifold is naturally fibred over S. Let us denote by n the 
canonical projection and construct a system of charts adapted to this fibred structure. We 
choose a system of local coordinates (x’, 9) on the open set U C S; here, p = 1, . . . , n. 
Then on the open set V n-’(U) we shall choose the local coordinate system ( x p ,  11.. 1G;) 
defined as follows: if ( x G ,  pb) are the coordinates of p E U then the n-dimensional 
hyperplane in Tp(S) corresponding to ( x ” ,  $, $ip) is spanned by the tangent vectors 

We will systematically use the summation convention over the dummy indices. 
By an evolution space we mean any (open) subbundle E of J d ( S ) .  

Let us define, for any evolution space E, 

Note that 
dim(J,’ ( S ) )  = 2n + 1. 

ALS = [U E A”+’(J,!(S))liZ,i&U = O,V&, 22 E Vect(E) vertical). (2) 

A vector field Z E Vect(E) is vertical if, and only if, rr,Z = 0. It is clear that any 
o E Am can be written in the local coordinates from above as follows: 

U = E  ’l...*Pn(umdx’o A d *  A , . . A dx” + nupop’ dXpo A 8pb A dx”’ A . . , A dx’“) 
+ n!r8* A dx’ A ... A dx”. (3) 

Here ug, uJ’OPI and r are smooth functions on E 

8* E d@ - JI,dx’ (4) 

and E@ ,..... 
One can verify this directly by performing a change of cham ( X F ,  *) n ( y ” ,  c), 

inducing ( x p ,  @, pbJ n (y”, I, &,), that the following equations have an intrinsic global 
meaning: 

o’=O (5 )  

U@” =a”@. (6) 

is the signature of the permutation ( I , .  . . , n) H ( p i , .  . . , /I”). 

Any closed element U E Am verifying (5 )  and (6) will be called a LagrangeSouriau 

(7 ) 

form on E (Ls-form). Such a U is of the form 

~ = n & , , , , , , , , ~ u ” ~ ” ’ d ~ ~ A 8 ~ A d x ” A . . . A d x ” . + n ! ? S ~ A d x ~ A  ... A dx”. 

The closedness condition 

do  = O  

gives explicitly 
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We will call (6), (9) and (10) the structure equations. 
A Lagrangian system over S is a couple ( E ,  U ) ,  where E E J i ( S )  is an evolution space 

over S and U is a Lagrangeouriau form on E.  There is a natural equivalence relation 
between two such systems, ( E l ,  U ] )  and (E2. u~), over the same manifold S, i.e. one must 
have a map M E Diff(S) such that &(E,)  = E2 and 

(&)*U2 = U ]  (11) 

where & E Diff(J,’(S)) is the natural lift of 01. An evolution is an immersion Y : M 
where M is some n-dimensional manifold (the ‘spacetime’ manifold). 

Euler-Lagrange equations if 

S, 

Let ( E , u )  be a Lagrangian system over S; one says that W : M + S verifies the 

(+)*izu = o (12) 

for any vector field Z E Vect(E). Here & : M -+ JA(S)  is the natural lift of W. In 
local coordinates, one can arrange q such that it has the form x p  H ( x ” ,  Y(x)); then + : M --f J,‘(S) is given by x p  H ( x p .  W ( x ) .  (aW/ax@)(x)) and (12) has the local 
expression 

A interesting consequence of this equation is the following lemma. 

Lemma. The Euler-Lagrange equations are trivial iff U = 0. 

We now come to the notion of symmetry. By a symmetry of the Euler-Lagrange 
equations, we understand a map @ E Diff(S) such that if IU : M + S is a solution of these 
equations, then so is q5 o Y. 

In the case of a scalar field, one can completely describe the structure of a symmetry. 
We obtain the following theorem. 

Theorem 1. 
symmetry. There then exists p E F(E) such that 

Let ( E , u )  be a Lagrangian system for a scalar field and @ E Diff(S) a 

($)*U = PO. (14) 

The function p must satisfy the equation 

d p A u  = O  (15) 

or, in local coordinates, 
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Proof. Because Z in (12) is arbitrary, one easily discovers that q5 is a symmetry iff 

($)‘izu = o ($)*(qj)*iza = o vz E Vect(E) vw : M H S. 

We denote for simplicity 

5 ($)*U. (18) 

One can show immediately that 5 is an Ls-form and, therefore, it has the structure given 
by (7) with U*” H a% and r H 5 .  It follows from above that we have 

(see (13)). Equivalently, 
N 

U J ’ ” ~ ~ ~ ~ ~  - r = 0 =+ a~””l@~pul - 5 = 0 (20) 

where @,su) is an arbitrary real symmetric matrix. In fact, it is more appropriate to consider 
expressions of the type appearing in (20) as functions of J;(S) .  

It is not hard to prove that (20) implies the existence of p E ?=(E), such that 

up” = pu’”. 
- 

UZQ,,,~] - i = p ( ~ ” ~ ~ ~ ~ , ~  - r) f = p r  

So, we find that 

5 = pa. 

However, as previously noted, 5 is an Ls-form, so pu must also be an Ls-form. From 
the definition of an Ls-fofi, it is clear that only the closedness condition (15) is missing. 
The derivation of (16) and (17) is elementary. 0 

Remark 1. If p is not locally constant, then (15) implies that U is of the form 

a = d p A o  (22) 

where o is an n-form. 

Remark 2. Let us suppose that the Lagrangian system ( E ,  a )  is non-degenerate, i.e. 

de t (u”)  # 0. (23) 

This condition has an intrinsic global meaning as it easily follows from performing a change 
of charts. (The condition of non-degeneracy ensures that the Euler-Lagrange equations (13) 
can be ‘solved‘ with respect to the second-order derivatives and the Cauchy problem can be 
well defined.) If we know (23) then one finds from (17) that = 0. Next, (16) gives 
ap/a@ = 0 and ap/axp = 0, so p is locally constant. This result is a sort of Lee-Hwa 
Chung theorem for the Lagrangian formalism (see, e.g., [12]). 

Remark 3. The case p = 1 corresponds to the so-called Noetherian symmetries. For a 
detailed discussion see [5]. 
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If a group G acts on S G 3 g H @g E Diff(S) then we say that G is a group of 
(Noetherian) symmetries for ( E ,  U )  if, for any g E G, @g is a (Noetherian) symmetry. In 
particular, we have 

It is of physical interest to solve the following classification problem: given the manifold 
S with an action of some group G on S,  find all the Lagrangian systems ( E ,  U) where 
E 2 .I,! (S) is an open subset and G is a group of (Noetherian) symmetries for ( E ,  U ) .  This 
goal will be achieved by simultaneously solving (6), (9), (IO), (I6), (17) and (24) in local 
coordinates and then investigating the possibility of globalizing the result. 

We now explain the connection with the usual Lagrangian formalism. We can consider 
that the open set V 2 x - ’ ( U )  is simply connected by choosing it to be sufficiently small. 
From the structure equations (6), (9) and (IO), one easily finds that there exists a (local) 
function L on V such that 

and 

Now (13) takes the usual form for the Euler-Lagiange equations. L is called a local 
Lagrangian. If U is given by (7), but with the coefficient functions as in (25) and (26) 
above, then we denote it by U‘. 

In our previously developed framework, S = R” x R with global coordinates (x”. @), 
(&= 1, ..., n). WecantakeE = J,!(S)  ~IIp“xPxIIp”withglobalcwrdinates(x”.@,~,). 
If F E Diff(R), let us consider @ F  E Diff(S) given by 

@ F ( X ,  @) = (x, p ( @ ) ) .  (27) 

By definition, the Lagrangian system ( E ,  U ) ,  defined previously, has universal 
invariance if @,D is a symmetry (see (24)), i.e. we have 

(@F)*U = P F  U (28) 

for some functions p~ E 3 ( E ) ,  verifying (16) and (17). It is easy to show that p~ must 
verify the following consistency relation: 

Pfi a @Fz P h  = PFleh  (29) 

which is easily recognized as a cocycle condition. One could be tempted to try to solve this 
cohomology problem. This can be achieved under some reasonable smoothness conditions, 
but we will prefer to circumvent this analysis. 

We substitute (7) into (28) and obtain equivalently 

(F’)’U’” 0 $F = PFU”” (30) 

F’(Z a $F - F“u’” o $F @,,@.) = PF 5.  (31) 
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From (30), it easily follows that pF is a coboundary, i.e. is of the form 

p p = b o $ p b - '  (32) 

for some function b E F(E).  In fact, one can show that the most general solution of (29) 
is of this type. 

We will study, in fact, only a pariicular case which covers the equations from 11-41, 
namely when b is a homogeneous function of degree p E N in the variables *p .  Then, 
from (32). we have 

pF = (F')P. (33) 

We insert (33) into (30) and (31) and consider that F is an infinitesimal diffeomorphism, 

w) = 11 + o w  (34) 

i.e. 

with B infinitesimal but otherwise arbitrary. We obtain 

o M " * p * "  = 0. (39) 

From the consistency equation (16), we obtain, for the case p # 0, 

U@"*& = 0 (40) 

so (39) is redundant in this case. Equation (17) is identically satisfied. 
We analyse now, for the case p # 0, the system (35)-(38) and (40)f. First, we 

concentrate on the functions U@".  Let us note that (36) is the infinitesimal form of the 
homogeneity property 

~ " " ( x ,  = Xp-2up"(x, 11,) Vh E W", (41) 

oJ- = , p s ' v  0 II (42) 

In the chart q~ # 0, this means that d" is of the following form: 

where sp" is a smooth function of the variables x ,  yI,  . . . , yn-, and we have defined 

t The case p = 0 can be analysed similarly. 
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From (6) we have 

slrv = 

and from (40) 

.. “-1 

sw = yiyjd’ 
i,j=l 

L55 

(44) 

(45) 

We still have structure equation (9) at our disposal. It is convenient to define the operator 

Then (9) is equivalent to 

- asoi = (p  - 2 - D)s” 
ayi 

asV as ik  
_=-  
ayk ayj ’ 

If we insert (46) into (49) we obtain 
.. 

( p  - I )d’  = 0. 

Analogously, if we insert (45) and (46) into (48) we obtain 

. .  “-1 

( p  - 1) yjs” = 0. 
’=I 

(49) 

If p # 1 then it easily follows that 

U = o  (53) 

so we are left only with the case p = 1. In this case, (51) and (52) become identities and 
siJ are constrained only by (44) and (50). It follows that there exists a function I depending 
on x and y l . .  . . , yn-1 such that 
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Then we obtain, from (45) and (46), 

and 

sw = ( 0 2  - 0)I. (56) 

Lo-*,Jlorr (57) 

a’ = a -U& (58) 
then it  is easy to analyse the structure of this auxilliary U-form which also verifies invariance 
condition (28) and (33). 

The structure of the functions sw” is completely elucidated. If we define 

then it is elementary to prove that we have (25) with L + LO. If we define 

The final result can be summarized as follows. 

Theorem 2. Let ( E ,  U )  be a first-order Lagrangian system for a scalar field having universal 
invariance (28) with p~ given by (33). Then we have non-trivial solutions only for p = I. 
In this case, we have 

U = UL. (59) 

L = $01 on + qr .  (60) 
Here, 1 is a smooth function depending on x and y ~ ,  . . . , yn-,  and r is only x-dependent. 

aV/axw, QI,,”) = 

For p = 1. we have 

The corresponding Euler-Lagrange equations (13), in the notation Yw 
a2Q/(ax”ax”) and for the case when 1 is x-independent, are 

(61) 

Remark 4.  For n = 2, we obtain 

If we take r = 0, we obtain (. . .) = 0 which is the equation appearing in [4]. 

Remark 5. Since p = 1, the universal invariance is not a Noetherian symmetry. 

There are a number of results obtained in this letter which will be interesting to 
generalize. 

First, one could try to extend this analysis to the case of a field with more than one 
component. This extension seems possible and plausible, but there might be some technical 
problems. 

Next, we come to the universal invariance. Can one study the general case (32)? This 
seems to be a complicated problem. 

Finally, one would like to generalize these results to higher-order Lagrangian systems. 
This problem is more manageable and some results in this direction will be reported soon. 
We will have to use a completely different method, because a generalization of our formalism 
to higher-order Lagrangian systems is not available. 
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